Picklable Model#

For custom ML models created with pure Python code, a simple way to make it work with the BentoML workflow is via bentoml.picklable_model.

Below is an example of saving a Python function as a model:

from typing import List
import numpy as np
import bentoml

def my_python_model(input_list: List[int]) -> List[int]:
    return np.square(np.array(input_list))

# `save_model` saves a given python object or function
saved_model = bentoml.picklable_model.save_model(
    signatures={"__call__": {"batchable": True}}
print(f"Model saved: {saved_model}")

Load the model back to memory for testing:

loaded_model = bentoml.picklable_model.load_model("my_python_model:latest")

loaded_model([1, 2, 3])
# out: array([1, 4, 9])

Load the model as a local Runner to test out its inference API:

runner = bentoml.picklable_model.get("my_python_model:latest").to_runner()

Full code example can be found at Gallery: Custom Python Model.