About this page

This is an API reference for CatBoost in BentoML. Please refer to CatBoost guides for more information about how to use CatBoost in BentoML.

bentoml.catboost.save_model(name: Tag | str, model: cb.CatBoost, *, signatures: dict[str, ModelSignatureDict] | None = None, labels: dict[str, str] | None = None, custom_objects: dict[str, t.Any] | None = None, external_modules: t.List[ModuleType] | None = None, metadata: dict[str, t.Any] | None = None) bentoml.Model[source]#

Save an CatBoost model instance to the BentoML model store.

  • name – The name to give to the model in the BentoML store. This must be a valid Tag name.

  • model – The CatBoost model to be saved.

  • signatures – Signatures of predict methods to be used. If not provided, the signatures default to {"predict": {"batchable": False}}. See ModelSignature for more details.

  • labels – A default set of management labels to be associated with the model. An example is {"training-set": "data-1"}.

  • custom_objects –

    Custom objects to be saved with the model. An example is {"my-normalizer": normalizer}.

    Custom objects are currently serialized with cloudpickle, but this implementation is subject to change.

  • external_modules (List[ModuleType], optional, default to None) – user-defined additional python modules to be saved alongside the model or custom objects, e.g. a tokenizer module, preprocessor module, model configuration module

  • metadata –

    Metadata to be associated with the model. An example is {"max_depth": 2}.

    Metadata is intended for display in model management UI and therefore must be a default Python type, such as str or int.


A tag with a format name:version where name is the user-defined model’s name, and a generated version by BentoML.

Return type:



import bentoml
import numpy as np

from catboost import CatBoostClassifier, Pool

# initialize data
train_data = np.random.randint(0, 100, size=(100, 10))

train_labels = np.random.randint(0, 2, size=(100))

test_data = catboost_pool = Pool(train_data, train_labels)

model = CatBoostClassifier(iterations=2,
# train the model, train_labels)

# save the model to the BentoML model store
bento_model = bentoml.catboost.save_model("my_catboost_model", model)
bentoml.catboost.load_model(bento_model: str | Tag | Model) catboost.CatBoost[source]#

Load the CatBoost model with the given tag from the local BentoML model store.


bento_model (str | Tag | Model) – Either the tag of the model to get from the store, or a BentoML ~bentoml.Model instance to load the model from.


The CatBoost model loaded from the model store or BentoML Model.

Return type:



import bentoml
# target model must be from the BentoML model store
booster = bentoml.catboost.load_model("my_catboost_model")
bentoml.catboost.get(tag_like: str | Tag) Model[source]#

Get the BentoML model with the given tag.


tag_like (str | Tag) – The tag of the model to retrieve from the model store.


A BentoML Model with the matching tag.

Return type:



import bentoml
# target model must be from the BentoML model store
model = bentoml.catboost.get("my_catboost_model")